ISTQB Foundation Level
  • ISTQB CTFL Syllabus 2018 V3.1
  • Author - Magdalena Olak
  • 1. Fundamentals of Testing
    • 1.1. What is Testing?
      • 1.1.1. Typical Objectives of Testing
      • 1.1.2. Testing and Debugging
    • 1.2. Why is Testing Necessary?
      • 1.2.1 Testing’s Contributions to Success
      • 1.2.2 Quality Assurance and Testing
      • 1.2.3 Errors, Defects, and Failures
      • 1.2.4 Defects, Root Causes and Effects
    • 1.3. Seven Testing Principles
    • 1.4. Test Process
      • 1.4.1 Test Process in Context
      • 1.4.2 Test Activities and Tasks
      • 1.4.3 Test Work Products
      • 1.4.4 Traceability between the Test Basis and Test Work Products
    • 1.5. The Psychology of Testing
      • 1.5.1 Human Psychology and Testing
      • 1.5.2 Tester’s and Developer’s Mindsets
  • 2. Testing Throughout the Software Development Lifecycle
    • 2.1. Software Development Lifecycle Models
      • 2.1.1. Software Development and Software Testing
      • 2.1.2. Software Development Lifecycle Models in Context
    • 2.2. Test Levels
      • 2.2.1. Component Testing
      • 2.2.2 Integration Testing
      • 2.2.3. System Testing
      • 2.2.4. Acceptance Testing
    • 2.3. Test Types
      • 2.3.1. Functional Testing
      • 2.3.2. Non-functional Testing
      • 2.3.3. White-box Testing
      • 2.3.4. Change-related Testing
      • 2.3.5. Test Types and Test Levels
    • 2.4. Maintenance Testing
      • 2.4.1 Triggers for Maintenance
      • 2.4.2 Impact Analysis for Maintenance
  • 3 Static Testing
    • 3.1 Static Testing Basics
      • 3.1.1 Work Products that Can Be Examined by Static Testing
      • 3.1.2 Benefits of Static Testing
      • 3.1.3 Differences between Static and Dynamic Testing
    • 3.2 Review Process
      • 3.2.1 Work Product Review Process
      • 3.2.2 Roles and responsibilities in a formal review
      • 3.2.3 Review Types
      • 3.2.4 Applying Review Techniques
      • 3.2.5 Success Factors for Reviews
  • 4 Test Techniques
    • 4.1 Categories of Test Techniques
      • 4.1.1 Categories of Test Techniques and Their Characteristics
    • 4.2 Black-box Test Techniques
      • 4.2.1 Equivalence Partitioning
      • 4.2.2 Boundary Value Analysis
      • 4.2.3 Decision Table Testing
      • 4.2.4 State Transition Testing
      • 4.2.5 Use Case Testing
    • 4.3 White-box Test Techniques
      • 4.3.1 Statement Testing and Coverage
      • 4.3.2 Decision Testing and Coverage
      • 4.3.3 The Value of Statement and Decision Testing
    • 4.4 Experience-based Test Techniques
      • 4.4.1 Error Guessing
      • 4.4.2 Exploratory Testing
      • 4.4.3 Checklist-based Testing
  • 5 Test Management
    • 5.1 Test Organization
      • 5.1.1 Independent Testing
      • 5.1.2 Tasks of a Test Manager and Tester
    • 5.2 Test Planning and Estimation
      • 5.2.1 Purpose and Content of a Test Plan
      • 5.2.2 Test Strategy and Test Approach
      • 5.2.3 Entry Criteria and Exit Criteria (Definition of Ready and Definition of Done)
      • 5.2.4 Test Execution Schedule
      • 5.2.5 Factors Influencing the Test Effort
      • 5.2.6 Test Estimation Techniques
    • 5.3 Test Monitoring and Control
      • 5.3.1 Metrics Used in Testing
      • 5.3.2 Purposes, Contents, and Audiences for Test Reports
    • 5.4 Configuration Management
    • 5.5 Risks and Testing
      • 5.5.1 Definition of Risk
      • 5.5.2 Product and Project Risks
      • 5.5.3 Risk-based Testing and Product Quality
    • 5.6 Defect Management
  • 6 Tool Support for Testing
    • 6.1 Test Tool Considerations
      • 6.1.1 Test Tool Classification
      • 6.1.2 Benefits and Risks of Test Automation
      • 6.1.3 Special Considerations for Test Execution and Test Management Tools
    • 6.2 Effective Use of Tools
      • 6.2.1 Main Principles for Tool Selection
      • 6.2.2 Pilot Projects for Introducing a Tool into an Organization
      • 6.2.3 Success Factors for Tools
Powered by GitBook
On this page
  • Ad hoc
  • Checklist-based
  • Scenarios and dry runs
  • Perspective-based
  • Role-based

Was this helpful?

  1. 3 Static Testing
  2. 3.2 Review Process

3.2.4 Applying Review Techniques

There are a number of review techniques that can be applied during the individual review (i.e., individual preparation) activity to uncover defects. These techniques can be used across the review types described above. The effectiveness of the techniques may differ depending on the type of review used. Examples of different individual review techniques for various review types are listed below.

Ad hoc

In an ad hoc review, reviewers are provided with little or no guidance on how this task should be performed. Reviewers often read the work product sequentially, identifying and documenting issues as they encounter them. Ad hoc reviewing is a commonly used technique needing little preparation. This technique is highly dependent on reviewer skills and may lead to many duplicate issues being reported by different reviewers.

Checklist-based

A checklist-based review is a systematic technique, whereby the reviewers detect issues based on checklists that are distributed at review initiation (e.g., by the facilitator). A review checklist consists of a set of questions based on potential defects, which may be derived from experience. Checklists should be specific to the type of work product under review and should be maintained regularly to cover issue types missed in previous reviews. The main advantage of the checklist-based technique is a systematic coverage of typical defect types. Care should be taken not to simply follow the checklist in individual reviewing, but also to look for defects outside the checklist.

Scenarios and dry runs

In a scenario-based review, reviewers are provided with structured guidelines on how to read through the work product. A scenario-based review supports reviewers in performing “dry runs” on the work product based on expected usage of the work product (if the work product is documented in a suitable format such as use cases). These scenarios provide reviewers with better guidelines on how to identify specific defect types than simple checklist entries. As with checklist-based reviews, in order not to miss other defect types (e.g., missing features), reviewers should not be constrained to the documented scenarios.

Perspective-based

In perspective-based reading, similar to a role-based review, reviewers take on different stakeholder viewpoints in individual reviewing. Typical stakeholder viewpoints include end user, marketing, designer, tester, or operations. Using different stakeholder viewpoints leads to more depth in individual reviewing with less duplication of issues across reviewers.

In addition, perspective-based reading also requires the reviewers to attempt to use the work product under review to generate the product they would derive from it. For example, a tester would attempt to generate draft acceptance tests if performing a perspective-based reading on a requirements specification to see if all the necessary information was included. Further, in perspective-based reading, checklists are expected to be used.

Empirical studies have shown perspective-based reading to be the most effective general technique for reviewing requirements and technical work products. A key success factor is including and weighing different stakeholder viewpoints appropriately, based on risks. See Shul 2000 for details on perspectivebased reading, and Sauer 2000 for the effectiveness of different review techniques.

Role-based

A role-based review is a technique in which the reviewers evaluate the work product from the perspective of individual stakeholder roles. Typical roles include specific end user types (experienced, inexperienced, senior, child, etc.), and specific roles in the organization (user administrator, system administrator, performance tester, etc.). The same principles apply as in perspective-based reading because the roles are similar.

Previous3.2.3 Review TypesNext3.2.5 Success Factors for Reviews

Last updated 4 years ago

Was this helpful?