ISTQB Foundation Level
  • ISTQB CTFL Syllabus 2018 V3.1
  • Author - Magdalena Olak
  • 1. Fundamentals of Testing
    • 1.1. What is Testing?
      • 1.1.1. Typical Objectives of Testing
      • 1.1.2. Testing and Debugging
    • 1.2. Why is Testing Necessary?
      • 1.2.1 Testing’s Contributions to Success
      • 1.2.2 Quality Assurance and Testing
      • 1.2.3 Errors, Defects, and Failures
      • 1.2.4 Defects, Root Causes and Effects
    • 1.3. Seven Testing Principles
    • 1.4. Test Process
      • 1.4.1 Test Process in Context
      • 1.4.2 Test Activities and Tasks
      • 1.4.3 Test Work Products
      • 1.4.4 Traceability between the Test Basis and Test Work Products
    • 1.5. The Psychology of Testing
      • 1.5.1 Human Psychology and Testing
      • 1.5.2 Tester’s and Developer’s Mindsets
  • 2. Testing Throughout the Software Development Lifecycle
    • 2.1. Software Development Lifecycle Models
      • 2.1.1. Software Development and Software Testing
      • 2.1.2. Software Development Lifecycle Models in Context
    • 2.2. Test Levels
      • 2.2.1. Component Testing
      • 2.2.2 Integration Testing
      • 2.2.3. System Testing
      • 2.2.4. Acceptance Testing
    • 2.3. Test Types
      • 2.3.1. Functional Testing
      • 2.3.2. Non-functional Testing
      • 2.3.3. White-box Testing
      • 2.3.4. Change-related Testing
      • 2.3.5. Test Types and Test Levels
    • 2.4. Maintenance Testing
      • 2.4.1 Triggers for Maintenance
      • 2.4.2 Impact Analysis for Maintenance
  • 3 Static Testing
    • 3.1 Static Testing Basics
      • 3.1.1 Work Products that Can Be Examined by Static Testing
      • 3.1.2 Benefits of Static Testing
      • 3.1.3 Differences between Static and Dynamic Testing
    • 3.2 Review Process
      • 3.2.1 Work Product Review Process
      • 3.2.2 Roles and responsibilities in a formal review
      • 3.2.3 Review Types
      • 3.2.4 Applying Review Techniques
      • 3.2.5 Success Factors for Reviews
  • 4 Test Techniques
    • 4.1 Categories of Test Techniques
      • 4.1.1 Categories of Test Techniques and Their Characteristics
    • 4.2 Black-box Test Techniques
      • 4.2.1 Equivalence Partitioning
      • 4.2.2 Boundary Value Analysis
      • 4.2.3 Decision Table Testing
      • 4.2.4 State Transition Testing
      • 4.2.5 Use Case Testing
    • 4.3 White-box Test Techniques
      • 4.3.1 Statement Testing and Coverage
      • 4.3.2 Decision Testing and Coverage
      • 4.3.3 The Value of Statement and Decision Testing
    • 4.4 Experience-based Test Techniques
      • 4.4.1 Error Guessing
      • 4.4.2 Exploratory Testing
      • 4.4.3 Checklist-based Testing
  • 5 Test Management
    • 5.1 Test Organization
      • 5.1.1 Independent Testing
      • 5.1.2 Tasks of a Test Manager and Tester
    • 5.2 Test Planning and Estimation
      • 5.2.1 Purpose and Content of a Test Plan
      • 5.2.2 Test Strategy and Test Approach
      • 5.2.3 Entry Criteria and Exit Criteria (Definition of Ready and Definition of Done)
      • 5.2.4 Test Execution Schedule
      • 5.2.5 Factors Influencing the Test Effort
      • 5.2.6 Test Estimation Techniques
    • 5.3 Test Monitoring and Control
      • 5.3.1 Metrics Used in Testing
      • 5.3.2 Purposes, Contents, and Audiences for Test Reports
    • 5.4 Configuration Management
    • 5.5 Risks and Testing
      • 5.5.1 Definition of Risk
      • 5.5.2 Product and Project Risks
      • 5.5.3 Risk-based Testing and Product Quality
    • 5.6 Defect Management
  • 6 Tool Support for Testing
    • 6.1 Test Tool Considerations
      • 6.1.1 Test Tool Classification
      • 6.1.2 Benefits and Risks of Test Automation
      • 6.1.3 Special Considerations for Test Execution and Test Management Tools
    • 6.2 Effective Use of Tools
      • 6.2.1 Main Principles for Tool Selection
      • 6.2.2 Pilot Projects for Introducing a Tool into an Organization
      • 6.2.3 Success Factors for Tools
Powered by GitBook
On this page

Was this helpful?

  1. 2. Testing Throughout the Software Development Lifecycle
  2. 2.4. Maintenance Testing

2.4.1 Triggers for Maintenance

There are several reasons why software maintenance, and thus maintenance testing, takes place, both for planned and unplanned changes.

We can classify the triggers for maintenance as follows:

  • Modification, such as planned enhancements (e.g., release-based), corrective and emergency changes, changes of the operational environment (such as planned operating system or database upgrades), upgrades of COTS software, and patches for defects and vulnerabilities

  • Migration, such as from one platform to another, which can require operational tests of the new environment as well as of the changed software, or tests of data conversion when data from another application will be migrated into the system being maintained

    • Retirement, such as when an application reaches the end of its life. When an application or system is retired, this can require testing of data migration or archiving if long dataretention periods are required.

    • Testing restore/retrieve procedures after archiving for long retention periods may also be needed.

    • Regression testing may be needed to ensure that any functionality that remains in service still works.

For Internet of Things systems, maintenance testing may be triggered by the introduction of completely new or modified things, such as hardware devices and software services, into the overall system. The maintenance testing for such systems places particular emphasis on integration testing at different levels (e.g., network level, application level) and on security aspects, in particular those relating to personal data.

Previous2.4. Maintenance TestingNext2.4.2 Impact Analysis for Maintenance

Last updated 4 years ago

Was this helpful?