ISTQB Foundation Level
  • ISTQB CTFL Syllabus 2018 V3.1
  • Author - Magdalena Olak
  • 1. Fundamentals of Testing
    • 1.1. What is Testing?
      • 1.1.1. Typical Objectives of Testing
      • 1.1.2. Testing and Debugging
    • 1.2. Why is Testing Necessary?
      • 1.2.1 Testing’s Contributions to Success
      • 1.2.2 Quality Assurance and Testing
      • 1.2.3 Errors, Defects, and Failures
      • 1.2.4 Defects, Root Causes and Effects
    • 1.3. Seven Testing Principles
    • 1.4. Test Process
      • 1.4.1 Test Process in Context
      • 1.4.2 Test Activities and Tasks
      • 1.4.3 Test Work Products
      • 1.4.4 Traceability between the Test Basis and Test Work Products
    • 1.5. The Psychology of Testing
      • 1.5.1 Human Psychology and Testing
      • 1.5.2 Tester’s and Developer’s Mindsets
  • 2. Testing Throughout the Software Development Lifecycle
    • 2.1. Software Development Lifecycle Models
      • 2.1.1. Software Development and Software Testing
      • 2.1.2. Software Development Lifecycle Models in Context
    • 2.2. Test Levels
      • 2.2.1. Component Testing
      • 2.2.2 Integration Testing
      • 2.2.3. System Testing
      • 2.2.4. Acceptance Testing
    • 2.3. Test Types
      • 2.3.1. Functional Testing
      • 2.3.2. Non-functional Testing
      • 2.3.3. White-box Testing
      • 2.3.4. Change-related Testing
      • 2.3.5. Test Types and Test Levels
    • 2.4. Maintenance Testing
      • 2.4.1 Triggers for Maintenance
      • 2.4.2 Impact Analysis for Maintenance
  • 3 Static Testing
    • 3.1 Static Testing Basics
      • 3.1.1 Work Products that Can Be Examined by Static Testing
      • 3.1.2 Benefits of Static Testing
      • 3.1.3 Differences between Static and Dynamic Testing
    • 3.2 Review Process
      • 3.2.1 Work Product Review Process
      • 3.2.2 Roles and responsibilities in a formal review
      • 3.2.3 Review Types
      • 3.2.4 Applying Review Techniques
      • 3.2.5 Success Factors for Reviews
  • 4 Test Techniques
    • 4.1 Categories of Test Techniques
      • 4.1.1 Categories of Test Techniques and Their Characteristics
    • 4.2 Black-box Test Techniques
      • 4.2.1 Equivalence Partitioning
      • 4.2.2 Boundary Value Analysis
      • 4.2.3 Decision Table Testing
      • 4.2.4 State Transition Testing
      • 4.2.5 Use Case Testing
    • 4.3 White-box Test Techniques
      • 4.3.1 Statement Testing and Coverage
      • 4.3.2 Decision Testing and Coverage
      • 4.3.3 The Value of Statement and Decision Testing
    • 4.4 Experience-based Test Techniques
      • 4.4.1 Error Guessing
      • 4.4.2 Exploratory Testing
      • 4.4.3 Checklist-based Testing
  • 5 Test Management
    • 5.1 Test Organization
      • 5.1.1 Independent Testing
      • 5.1.2 Tasks of a Test Manager and Tester
    • 5.2 Test Planning and Estimation
      • 5.2.1 Purpose and Content of a Test Plan
      • 5.2.2 Test Strategy and Test Approach
      • 5.2.3 Entry Criteria and Exit Criteria (Definition of Ready and Definition of Done)
      • 5.2.4 Test Execution Schedule
      • 5.2.5 Factors Influencing the Test Effort
      • 5.2.6 Test Estimation Techniques
    • 5.3 Test Monitoring and Control
      • 5.3.1 Metrics Used in Testing
      • 5.3.2 Purposes, Contents, and Audiences for Test Reports
    • 5.4 Configuration Management
    • 5.5 Risks and Testing
      • 5.5.1 Definition of Risk
      • 5.5.2 Product and Project Risks
      • 5.5.3 Risk-based Testing and Product Quality
    • 5.6 Defect Management
  • 6 Tool Support for Testing
    • 6.1 Test Tool Considerations
      • 6.1.1 Test Tool Classification
      • 6.1.2 Benefits and Risks of Test Automation
      • 6.1.3 Special Considerations for Test Execution and Test Management Tools
    • 6.2 Effective Use of Tools
      • 6.2.1 Main Principles for Tool Selection
      • 6.2.2 Pilot Projects for Introducing a Tool into an Organization
      • 6.2.3 Success Factors for Tools
Powered by GitBook
On this page

Was this helpful?

  1. 2. Testing Throughout the Software Development Lifecycle
  2. 2.1. Software Development Lifecycle Models

2.1.2. Software Development Lifecycle Models in Context

Software development lifecycle models must be selected and adapted to the context of project and product characteristics. An appropriate software development lifecycle model should be selected and adapted based on the project goal, the type of product being developed, business priorities (e.g., time-tomarket), and identified product and project risks. For example, the development and testing of a minor internal administrative system should differ from the development and testing of a safety-critical system such as an automobile’s brake control system. As another example, in some cases organizational and cultural issues may inhibit communication between team members, which can impede iterative development.

Depending on the context of the project, it may be necessary to combine or reorganize test levels and/or test activities. For example, for the integration of a commercial off-the-shelf (COTS) software product into a larger system, the purchaser may perform interoperability testing at the system integration test level (e.g., integration to the infrastructure and other systems) and at the acceptance test level (functional and non-functional, along with user acceptance testing and operational acceptance testing). See section 2.2 for a discussion of test levels and section 2.3 for a discussion of test types.

In addition, software development lifecycle models themselves may be combined. For example, a Vmodel may be used for the development and testing of the backend systems and their integrations, while an Agile development model may be used to develop and test the front-end user interface (UI) and functionality. Prototyping may be used early in a project, with an incremental development model adopted once the experimental phase is complete.

Internet of Things (IoT) systems, which consist of many different objects, such as devices, products, and services, typically apply separate software development lifecycle models for each object. This presents a particular challenge for the development of Internet of Things system versions. Additionally the software development lifecycle of such objects places stronger emphasis on the later phases of the software development lifecycle after they have been introduced to operational use (e.g., operate, update, and decommission phases).

Reasons why software development models must be adapted to the context of project and product characteristics can be:

  • Difference in product risks of systems (complex or simple project)

  • Many business units can be part of a project or program (combination of sequential and agile development)

  • Short time to deliver a product to the market (merge of test levels and/or integration of test types in test levels)

Previous2.1.1. Software Development and Software TestingNext2.2. Test Levels

Last updated 4 years ago

Was this helpful?